A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: A simulation case
نویسندگان
چکیده
Eye movement artifacts represent a critical issue for quantitative electroencephalography (EEG) analysis and a number of mathematical approaches have been proposed to reduce their contribution in EEG recordings. The aim of this paper was to objectively and quantitatively evaluate the performance of ocular filtering methods with respect to spectral target variables widely used in clinical and functional EEG studies. In particular the following methods were applied: regression analysis and some blind source separation (BSS) techniques based on second-order statistics (PCA, AMUSE and SOBI) and on higher-order statistics (JADE, INFOMAX and FASTICA). Considering blind source decomposition methods, a completely automatic procedure of BSS based on logical rules related to spectral and topographical information was proposed in order to identify the components related to ocular interference. The automatic procedure was applied in different montages of simulated EEG and electrooculography (EOG) recordings: a full montage with 19 EEG and 2 EOG channels, a reduced one with only 6 EEG leads and a third one where EOG channels were not available. Time and frequency results in all of them indicated that AMUSE and SOBI algorithms preserved and recovered more brain activity than the other methods mainly at anterior regions. In the case of full montage: (i) errors were lower than 5% for all spectral variables at anterior sites; and (ii) the highest improvement in the signal-to-artifact (SAR) ratio was obtained up to 40dB at these anterior sites. Finally, we concluded that second-order BSS-based algorithms (AMUSE and SOBI) provided an effective technique for eye movement removal even when EOG recordings were not available or when data length was short.
منابع مشابه
EEG Artifact Removal System for Depression Using a Hybrid Denoising Approach
Introduction: Clinicians use several computer-aided diagnostic systems for depression to authorize their diagnosis. An electroencephalogram (EEG) may be used as an objective tool for early diagnosis of depression and controlling it from reaching a severe and permanent state. However, artifact contamination reduces the accuracy in EEG signal processing systems. Methods: This work proposes a no...
متن کاملAn Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio
It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we ...
متن کاملAutomatic Sleep Stages Detection Based on EEG Signals Using Combination of Classifiers
Sleep stages classification is one of the most important methods for diagnosis in psychiatry and neurology. In this paper, a combination of three kinds of classifiers are proposed which classify the EEG signal into five sleep stages including Awake, N-REM (non-rapid eye movement) stage 1, N-REM stage 2, N-REM stage 3 and 4 (also called Slow Wave Sleep), and REM. Twenty-five all night recordings...
متن کاملSOBI-RO for Automatic Removal of Electroocular Artifacts from EEG Data-Based Motor Imagery
Signals from eye movements and blinks can be orders of magnitude larger than braingenerated electrical potentials and are one of the main sources of artifacts in electroencephalographic (EEG) data. This article presents a method based on blind source separation (BSS) for automatic removal of electroocular artifacts from EEG datain amotor imagery experiment. BBS is a signalprocessing methodology...
متن کاملImplementing a Smart Method to Eliminate Artifacts of Vital Signals
Background: Electroencephalography (EEG) has vital and significant applications in different medical fields and is used for the primary evaluation of neurological disorders. Hence, having easy access to suitable and useful signal is very important. Artifacts are undesirable confusions which are generally originated from inevitable human activities such as heartbeat, blinking of eyes and facial ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers in biology and medicine
دوره 38 3 شماره
صفحات -
تاریخ انتشار 2008